If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8t^2-9=0
a = 8; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·8·(-9)
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{2}}{2*8}=\frac{0-12\sqrt{2}}{16} =-\frac{12\sqrt{2}}{16} =-\frac{3\sqrt{2}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{2}}{2*8}=\frac{0+12\sqrt{2}}{16} =\frac{12\sqrt{2}}{16} =\frac{3\sqrt{2}}{4} $
| 4+x-10=17 | | 1.4+0.1x=0.5 | | 5x+17=2x+107 | | 12.7d=15.6 | | 5+-7+x=8 | | 7+b+10=18 | | r+8+5=13 | | 1.00x+0.14=45990 | | v+3+2=-4 | | n-2+3=6 | | x+0.14x=45990 | | 4+y=16 | | 10x+2x+5=8x+4x+7 | | k+4-5=2 | | 6x+8x-78=0 | | 3/(x-3)+2=-5 | | 2x+4/5=2 | | 5(5+x)=2(6+x) | | 4x=8=6x+10 | | 4(3n+2)=9(5n+7)=2 | | x+5+7=10 | | (6x)+(8x-8)=90 | | 7x÷3=14 | | (14x+47)+(5x)=180 | | 4y2+2=38 | | 5y-2=3y+10# | | (14+47)+(5x)=180 | | 10x-6x=23+5 | | (3x+6)+(4x-7)=90 | | 3(x-1)=2-(x+2) | | (5x+5)+(6x-14)=112 | | 10x^2-30x-38=0 |